Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Physiol Rev ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483288

RESUMO

Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences, but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems-biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampal-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors (as found in fear-related disorders, including simpler forms of post-traumatic stress disorder, PTSD), by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.

2.
Proc Natl Acad Sci U S A ; 120(17): e2205576120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068238

RESUMO

Consistent evidence from human data points to successful threat-safety discrimination and responsiveness to extinction of fear memories as key characteristics of resilient individuals. To promote valid cross-species approaches for the identification of resilience mechanisms, we establish a translationally informed mouse model enabling the stratification of mice into three phenotypic subgroups following chronic social defeat stress, based on their individual ability for threat-safety discrimination and conditioned learning: the Discriminating-avoiders, characterized by successful social threat-safety discrimination and extinction of social aversive memories; the Indiscriminate-avoiders, showing aversive response generalization and resistance to extinction, in line with findings on susceptible individuals; and the Non-avoiders displaying impaired aversive conditioned learning. To explore the neurobiological mechanisms underlying the stratification, we perform transcriptome analysis within three key target regions of the fear circuitry. We identify subgroup-specific differentially expressed genes and gene networks underlying the behavioral phenotypes, i.e., the individual ability to show threat-safety discrimination and respond to extinction training. Our approach provides a translationally informed template with which to characterize the behavioral, molecular, and circuit bases of resilience in mice.


Assuntos
Condicionamento Clássico , Medo , Humanos , Camundongos , Animais , Medo/fisiologia , Condicionamento Clássico/fisiologia , Aprendizagem da Esquiva , Estresse Psicológico/genética , Afeto , Extinção Psicológica/fisiologia
3.
Neurosci Biobehav Rev ; 145: 105032, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608919

RESUMO

Laboratory mouse models offer opportunities to bridge the gap between basic neuroscience and applied stress research. Here we consider the ecological validity of social defeat stressors in mouse models of emotional vulnerability and resilience. Reports identified in PubMed from 1980 to 2020 are reviewed for the ecological validity of social defeat stressors, sex of subjects, and whether results are discussed in terms of vulnerability alone, resilience alone, or both vulnerability and resilience. Most of the 318 reviewed reports (95%) focus on males, and many reports (71%) discuss vulnerability and resilience. Limited ecological validity is associated with increased vulnerability and decreased resilience. Elements of limited ecological validity include frequent and repeated exposure to defeat stressors without opportunities to avoid or escape from unfamiliar conspecifics that are pre-screened and selected for aggressive behavior. These elements ensure defeat and may be required to induce vulnerability, but they are not representative of naturalistic conditions. Research aimed at establishing causality is needed to determine whether ecologically valid stressors build resilience in both sexes of mice.


Assuntos
Derrota Social , Estresse Psicológico , Masculino , Camundongos , Animais , Estresse Psicológico/psicologia , Agressão , Comportamento Social
4.
Cells ; 11(21)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359800

RESUMO

Upon chronic stress, a fraction of individuals shows stress resilience, which can prevent long-term mental dysfunction. The underlying molecular mechanisms are complex and have not yet been fully understood. In this study, we performed a data-driven behavioural stratification together with single-cell transcriptomics of the hippocampus in a mouse model of chronic social defeat stress. Our work revealed that in a sub-group exhibiting molecular responses upon chronic stress, the dorsal hippocampus is particularly involved in neuroimmune responses, angiogenesis, myelination, and neurogenesis, thereby enabling brain restoration and homeostasis after chronic stress. Based on these molecular insights, we applied rapamycin after the stress as a proof-of-concept pharmacological intervention and were able to substantially increase stress resilience. Our findings serve as a data resource and can open new avenues for further understanding of molecular processes underlying stress response and for targeted interventions supporting resilience.


Assuntos
Derrota Social , Estresse Psicológico , Camundongos , Masculino , Animais , Hipocampo , Neurogênese , Modelos Animais de Doenças
5.
Microorganisms ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35744594

RESUMO

The microbiome is an important player within physiological homeostasis of the body but also in pathophysiological derailments. Chronic social stress is a challenge to the organism, which results in psychological illnesses such as depression in some individuals and can be counterbalanced by others, namely resilient individuals. In this study, we wanted to elucidate the potential contribution of the microbiome to promote resilience. Male mice were subjected to the classical chronic social defeat paradigm. Defeated or undefeated mice were either controls (receiving normal drinking water) or pre-treated with antibiotics or probiotics. Following social defeat, resilient behavior was assessed by means of the social interaction test. Neither depletion nor probiotic-shifted alteration of the microbiome influenced stress-associated behavioral outcomes. Nevertheless, clear changes in microbiota composition due to the defeat stress were observed such as elevated Bacteroides spp. This stress-induced increase in Bacteroides in male mice could be confirmed in a related social stress paradigm (instable social hierarchy) in females. This indicates that while manipulation of the microbiome via the antibiotics- and probiotics-treatment regime used here has no direct impact on modulating individual stress susceptibility in rodents, it clearly affects the microbiome in the second line and in a sex-independent manner regarding Bacteroides.

6.
Psychoneuroendocrinology ; 139: 105700, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35220090

RESUMO

Prolonged social stress is a major cause for depression in humans and is associated with a wide range of subsequent pathophysiological changes such as elevated blood pressure. A routinely used model for investigating this kind of stress in mice is the chronic social defeat paradigm where a smaller intruder is exposed to an aggressive inhabitant of a home cage. This model is restricted to males and includes a high proportion of physical stress that might e.g., interfere with immunological aspects of the stress. The prevalence of depression in humans is even higher in women than in men. Therefore, expanding models to female individuals is desirable. We here tested the social instability model as a tool for administering chronic social stress to female C57BL/6J mice and analyzed short-term as well as long-lasting effects. Animals were housed in groups of four and were shuffled two times a week, resulting in a permanent re-structuration of their social hierarchy. While directly after the stress exposure, serum corticosterone was elevated, increased body weight and fat deposits were observed in stressed mice even one year after discontinuation of the stress. At the behavioral level, animals could be stratified into resilient and susceptible animals directly post-stress, but those subgroups were not distinguishable any more in the long-term analysis. To identify molecular contributors to resilience in the here presented social instability induced stress model, Arc-activity dependent trapping of neurons was conducted in Arc-creERT2/sun1sfGFP mice. RNA samples derived from activated nuclei from the ventral hippocampus, a brain region involved in stress-regulation during attacks or explorative behavior of mice, were subjected to a neurogenesis pathway array. While several genes were differentially regulated by stress, in particular, artemin, a neurotrophic factor was upregulated in resilient versus susceptible individuals.


Assuntos
Hipocampo , Estresse Psicológico , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/genética , Neurônios , Comportamento Social , Estresse Psicológico/metabolismo
7.
World J Biol Psychiatry ; 23(8): 631-642, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34985381

RESUMO

OBJECTIVES: Previous studies indicated a relationship between aldosterone, the mineralocorticoid receptor (MR), and antidepressant treatment outcome. Physiological indicators of MR function (blood pressure and electrolytes) are easily accessible and may therefore serve as useful predictors. Thus, our aim was to investigate the predictive value of peripheral MR-related markers for antidepressant treatment outcomes. METHODS: 826 MDD patients who had participated in the randomised-controlled Early Medication Change (EMC) trial were analysed. Depression severity and MR-related markers were assessed weekly. In 562 patients, genetic variation of five MR-related genes was determined. RESULTS: Patients with blood pressure <120mmHg showed higher depression severity (p = 0.005) than patients with blood pressure ≥120mmHg. Patients with a melancholic subtype had significantly lower blood pressures (p = 0.004). Na+/K+ ratio was positively and K+-concentration was negatively correlated to depression severity and to relative changes in HAMD from baseline to day 14, and 56 respectively (p < 0.001). For none of the MR-related genes, genetic variation was associated with treatment outcomes. CONCLUSIONS: We confirmed early observations of an altered peripheral MR sensitivity, reflected by lower blood pressure, low K+ or high Na+/K+ ratio in patients with more severe depression. These routinely collected biomarkers may potentially be useful for risk stratification in an early stage of treatment. Trial Registration: clinicaltrials.gov Identifier: NCT00974155; https://www.clinicaltrials.gov/ct2/results?term=NCT00974155.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/uso terapêutico , Mineralocorticoides/uso terapêutico , Depressão , Antidepressivos/efeitos adversos , Resultado do Tratamento , Biomarcadores
8.
Exp Eye Res ; 213: 108853, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800481

RESUMO

PURPOSE: The roles of vascular dysfunction and chronic stress have been extensively discussed in the pathophysiology of glaucoma. Our aim was to test whether chronic stress causes retinal vascular dysfunction and therewith induces retinal ganglion cells (RGCs) loss. METHODS: Twelve mice underwent chronic social defeat (CSD) stress, while 12 mice received control treatment only. Intraocular pressure (IOP) was measured with a rebound tonometer. Blood plasma corticosterone concentration and adrenal gland weight were used to assess stress levels. Brn-3a staining in retinas and PPD staining in optic nerve cross sections were conducted to assess the survival of RGCs and axons respectively. The ET-1 and α-SMA levels were determined in retina. Retinal vascular autoregulation, functional response to various vasoactive agents and vascular mechanics were measured using video microscopy. RESULTS: No significant difference in IOP levels was observed during and after CSD between CSD mice and controls. CSD stress caused hypercortisolemia 2 days post-CSD. However, increased corticosterone levels went back to normal 8 months after CSD. CSD-exposed mice developed adrenal hyperplasia 3 days post-CSD, which was normalized by 8 months. RGC and axon survival were similar between CSD mice and controls. However, CSD stress caused irreversible, impaired autoregulation and vascular dysfunction of retinal arterioles in CSD mice. In addition, impaired maximal dilator capacity of retinal arterioles was observed 8 months post-CSD rather than 3 days post-CSD. Remarkably, ET-1 levels were increased 3 days post-CSD while α-SMA levels were decreased 8 months post-CSD. CONCLUSIONS: We found that CSD stress does not cause IOP elevation, nor loss of RGCs and their axons. However, it strikingly causes irreversible impaired autoregulation and endothelial function in murine retinal arterioles. In addition, CSD changed vascular mechanics on a long-term basis. Increased ET-1 levels and loss of pericytes in retina vessels may involve in this process.


Assuntos
Artéria Retiniana/fisiopatologia , Doenças Retinianas/fisiopatologia , Células Ganglionares da Retina/patologia , Derrota Social , Estresse Psicológico/fisiopatologia , Actinas/metabolismo , Hiperplasia Suprarrenal Congênita/fisiopatologia , Animais , Sobrevivência Celular , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Transtorno 46,XY do Desenvolvimento Sexual/fisiopatologia , Endotelina-1/metabolismo , Pressão Intraocular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Ocular/fisiopatologia , Nervo Óptico/fisiopatologia , Artéria Retiniana/metabolismo , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Estresse Psicológico/metabolismo , Tonometria Ocular , Fator de Transcrição Brn-3A/metabolismo , Gravação em Vídeo
9.
Neurobiol Stress ; 15: 100404, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34632008

RESUMO

Delayed onset of antidepressant action is a shortcoming in depression treatment. Ketamine and its metabolite (2R,6R)-hydroxynorketamine (HNK) have emerged as promising rapid-acting antidepressants. However, their mechanism of action remains unknown. In this study, we first described the anxious and depression-prone inbred mouse strain, DBA/2J, as an animal model to assess the antidepressant-like effects of ketamine and HNK in vivo. To decode the molecular mechanisms mediating HNK's rapid antidepressant effects, a longitudinal cerebrospinal fluid (CSF) proteome profiling of its acute and sustained effects was conducted using an unbiased, hypothesis-free mass spectrometry-based proteomics approach. A total of 387 proteins were identified, with a major implication of significantly differentially expressed proteins in the glucocorticoid receptor (GR) signaling pathway, providing evidence for a link between HNK and regulation of the stress hormone system. Mechanistically, we identified HNK to repress GR-mediated transcription and reduce hormonal sensitivity of GR in vitro. In addition, mammalian target of rapamycin (mTOR) and brain-derived neurotrophic factor (BDNF) were predicted to be important upstream regulators of HNK treatment. Our results contribute to precise understanding of the temporal dynamics and molecular targets underlying HNK's rapid antidepressant-like effects, which can be used as a benchmark for improved treatment strategies for depression in future.

10.
Bioinformatics ; 37(21): 3972-3973, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34601559

RESUMO

SUMMARY: The IntelliCage systems offer the possibility to conduct long-term behavioral experiments on mice in social groups without human intervention. Although this setup provides new findings, only about 150 studies with the IntelliCage system have been published in the last two decades, which is also caused by the challenging problems of processing and handling the large and heterogeneous amounts of captured data. This application note introduces the Python-GUI IntelliPy, especially designed for users not very experienced in using programming languages. IntelliPy allows users to quickly analyze the IntelliCage output in a user-friendly way, thus making the systems more accessible to a broader audience. AVAILABILITY AND IMPLEMENTATION: https://github.com/NiRuff/IntelliPy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Software , Animais , Camundongos , Humanos
11.
Neurobiol Stress ; 15: 100338, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34095364

RESUMO

The precise mechanisms underlying the detrimental effects of early life adversity (ELA) on adult mental health remain still elusive. To date, most studies have exclusively targeted neuronal populations and not considered neuron-glia crosstalk as a crucially important element for the integrity of stress-related brain function. Here, we have investigated the impact of ELA, in the form of a limited bedding and nesting material (LBN) paradigm, on a glial subpopulation with unique properties in brain homeostasis, the NG2+ cells. First, we have established a link between maternal behavior, activation of the offspring's stress response and heterogeneity in the outcome to LBN manipulation. We further showed that LBN targets the hippocampal NG2+ transcriptome with glucocorticoids being an important mediator of the LBN-induced molecular changes. LBN altered the NG2+ transcriptome and these transcriptional effects were correlated with glucocorticoids levels. The functional relevance of one LBN-induced candidate gene, Scn7a, could be confirmed by an increase in the density of voltage-gated sodium (Nav) channel activated currents in hippocampal NG2+ cells. Scn7a remained upregulated until adulthood in LBN animals, which displayed impaired cognitive performance. Considering that Nav channels are important for NG2+ cell-to-neuron communication, our findings provide novel insights into the disruption of this process in LBN mice.

12.
J Psychiatr Res ; 139: 150-158, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058654

RESUMO

Major depressive disorder (MDD) is a highly heterogeneous disorder, which may partly explain why treatment outcome using antidepressants is unsatisfactory. We investigated the onset of depression as a possible clinical marker for therapy response prediction in the context of somatic biomarkers blood pressure and plasma electrolyte concentration. 889 MDD patients were divided into early (EO, n = 226), intermediate (IO, n = 493), and late onset (LO, n = 169) patients and were analyzed for differences in socio-demographic and clinical parameters, comorbidities and treatment outcome as well as systolic blood pressure and electrolytes. EO patients more often suffered from a recurrent depression, had more previous depressive episodes, a higher rate of comorbid axis I and II disorders, and more often reported of suicidality (p < 0.001) compared to IO and LO patients. Treatment outcome was not different from IO and LO patients, although LO patients responded faster. EO patients who showed an early non-improvement of depression after 2 weeks of therapy (<20% improvement) had a 4.3-fold higher likelihood to become non-remitter as compared to LO patients with an early improvement. EO patients had significantly lower systolic blood pressure than patients with IO or LO and electrolytes in EO patients were significantly correlated with depression severity. Our results confirm other studies showing an association of an early onset of depression with a slower treatment response. The worse treatment outcome in patients with an additional early non-improvement to antidepressant therapy opens perspectives to develop and test individualized treatment approaches for EO and LO patients in the future, which may be based on differences in autonomic regulation.


Assuntos
Transtorno Depressivo Maior , Idade de Início , Antidepressivos/uso terapêutico , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/epidemiologia , Humanos , Resultado do Tratamento
13.
J Endocrinol ; 249(1): 19-30, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33608492

RESUMO

Stress has a major impact on the modulation of metabolism, as previously evidenced by hyperglycemia following chronic social defeat (CSD) stress in mice. Although CSD-triggered metabolic dysregulation might predispose to pre-diabetic conditions, insulin sensitivity remained intact, and obesity did not develop, when animals were fed with a standard diet (SD). Here, we investigated whether a nutritional challenge, a high-fat diet (HFD), aggravates the metabolic phenotype and whether there are particularly sensitive time windows for the negative consequences of HFD exposure. Chronically stressed male mice and controls (CTRL) were kept under (i) SD-conditions, (ii) with HFD commencing post-CSD, or (iii) provided with HFD lasting throughout and after CSD. Under SD conditions, stress increased glucose levels early post-CSD. Both HFD regimens increased glucose levels in non-stressed mice but not in stressed mice. Nonetheless, when HFD was provided after CSD, stressed mice did not differ from controls in long-term body weight gain, fat tissue mass and plasma insulin, and leptin levels. In contrast, when HFD was continuously available, stressed mice displayed reduced body weight gain, lowered plasma levels of insulin and leptin, and reduced white adipose tissue weights as compared to their HFD-treated non-stressed controls. Interestingly, stress-induced adrenal hyperplasia and hypercortisolemia were observed in mice treated with SD and with HFD after CSD but not in stressed mice exposed to a continuous HFD treatment. The present work demonstrates that CSD can reduce HFD-induced metabolic dysregulation. Hence, HFD during stress may act beneficially, as comfort food, by decreasing stress-induced metabolic demands.


Assuntos
Antígenos de Grupos Sanguíneos/análise , Dieta Hiperlipídica , Estresse Psicológico/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/psicologia , Ingestão de Energia , Teste de Tolerância a Glucose , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/psicologia , Derrota Social , Estresse Psicológico/sangue , Aumento de Peso
14.
Neurobiol Stress ; 14: 100290, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33457472

RESUMO

Chronic social defeat (CSD) has been widely used as a psychosocial stress model in mice, with the magnitude of CSD-induced social avoidance as the major behavioral hallmark of the resilient and susceptible groups. Despite significant progress in the study of the neurobiology of resilient and susceptible mice, the nature and ethological relevance of CSD-induced social avoidance and social approach, particularly measured using a CD1 mouse, needs conceptual clarification. Based on the findings of a recent study revealing substantial individuality in genetically homogeneous inbred mice, we investigated whether certain baseline individual characteristics of male C57BL/6J mice predict the resilient outcome after CSD. We focused on two well-studied individual traits that seem to have heritable underpinnings-approach to novelty and avoidance of harm, which are essential for the expression of the exploratory drive. Our results showed that the exploration levels and the approach to novelty and harm were different before and after CSD in resilient and susceptible mice. Before the stress, resilient mice had higher horizontal activity in a novel environment, shorter approach latencies, and higher exploration times for social and non-social targets than susceptible mice. However, susceptible mice performed better in the passive avoidance task than resilient mice as they were more successful in learning to avoid potential adversity by suppressing the spontaneous exploratory drive. Our findings challenge the validity of the current selection criteria for the susceptible and resilient groups and encourage comprehensive assessment of both baseline and stress-induced individual behavioral signatures of mice.

15.
Transl Psychiatry ; 11(1): 4, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33414410

RESUMO

Major depressive disorder is the most prevalent mental illness worldwide, still its pharmacological treatment is limited by various challenges, such as the large heterogeneity in treatment response and the lack of insight into the neurobiological pathways underlying this phenomenon. To decode the molecular mechanisms shaping antidepressant response and to distinguish those from general paroxetine effects, we used a previously established approach targeting extremes (i.e., good vs poor responder mice). We focused on the dentate gyrus (DG), a subregion of major interest in the context of antidepressant mechanisms. Transcriptome profiling on micro-dissected DG granule cells was performed to (i) reveal cell-type-specific changes in paroxetine-induced gene expression (paroxetine vs vehicle) and (ii) to identify molecular signatures of treatment response within a cohort of paroxetine-treated animals. We identified 112 differentially expressed genes associated with paroxetine treatment. The extreme group comparison (good vs poor responder) yielded 211 differentially expressed genes. General paroxetine effects could be distinguished from treatment response-associated molecular signatures, with a differential gene expression overlap of only 4.6% (15 genes). Biological pathway enrichment and cluster analyses identified candidate mechanisms associated with good treatment response, e.g., neuropeptide signaling, synaptic transmission, calcium signaling, and regulation of glucocorticoid secretion. Finally, we examined glucocorticoid receptor (GR)-dependent regulation of selected response-associated genes to analyze a hypothesized interplay between GR signaling and good antidepressant treatment response. Among the most promising candidates, we suggest potential targets such as the developmental gene Otx2 or Htr2c for further investigations into antidepressant treatment response in the future.


Assuntos
Transtorno Depressivo Maior , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Giro Denteado , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Hipocampo , Camundongos , Paroxetina/farmacologia , Paroxetina/uso terapêutico
16.
Stress ; 24(3): 353-358, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32546032

RESUMO

OBJECTIVE: The suggested link between major depression disorder (MDD) and blood-brain barrier (BBB) alterations supports an impact on the neurovascular unit in this disease condition. Here we investigate how pericytes, a major component in the neurovascular unit, respond to stress, stress hormones, proinflammatory cytokine and depression. METHOD: Hippocampal sections of chronic unpredictable stressed (CMS) rats, MDD patients and respective controls were immuno-stained against NG2, where the number of NG2+ pericytes in the molecular layer was counted. Proliferation of cultured pericytes after treatment with cortisol and IL-1ß was analyzed using radioactive-labeled thymidine. FINDINGS: The number of NG2+ pericytes was significantly higher in CMS animals than controls. Higher number of NG2+ pericytes was also detected in MDD patients, but the increase did not reach significance. IL-1ß, but not cortisol, induced a significant increase in proliferation of cultured pericytes. CONCLUSION: Our results indicate that exposure to stressful conditions affects the hippocampal pericyte population. These findings add to our knowledge about the impact of stress on the neurovascular unit, which might be relevant for understanding the alterations in BBB found in MDD patients.


Assuntos
Pericitos , Estresse Psicológico , Animais , Barreira Hematoencefálica , Citocinas , Hipocampo , Humanos , Ratos
17.
J Clin Psychopharmacol ; 41(1): 62-66, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208708

RESUMO

BACKGROUND: Within a single depressive episode, most patients receive different antidepressants because of an inadequate response to the first-line antidepressant. A commonly used strategy is to switch from a selective serotonin reuptake inhibitor to a selective serotonin-norepinephrine reuptake inhibitor. However, little is known about the tolerability of this switch with consideration of dose and drug concentration in blood. METHODS: After 4 weeks of inadequate response to escitalopram (10-20 mg/d), medication was switched to another 4 weeks of venlafaxine (VF, 150-375 mg/d) in 234 depressed patients. Serum concentrations, depression severity, and adverse drug reactions (ADRs) were assessed weekly. RESULTS: The switch of medication led to an increase of ADRs such as reduced salivation (+11%), orthostatic dizziness (+11%), and sweating (+9.8%). The most frequent ADRs during treatment with VF were reduced salivation (28.6%), sweating (24.6%), and orthostatic dizziness (15.8%). In patients receiving high-dose VF, a significant improvement of depressive symptomatology was observed, and most ADRs decreased during the course of treatment, even in patients above the therapeutic reference range. LIMITATIONS: Patients and physicians were aware of medication, and there was no direct comparison with the herein presented switch of medication. IMPLICATIONS: This study provides important information about the tolerability of a commonly used antidepressant treatment strategy. More detailed information about putative ADRs may help clinicians increase compliance through effective patient education. Because ADRs of VF were associated with the plasma concentration, therapeutic drug monitoring is recommended to guide the therapy and manage problems of tolerability.


Assuntos
Antidepressivos/uso terapêutico , Citalopram/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Cloridrato de Venlafaxina/uso terapêutico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Transl Psychiatry ; 10(1): 200, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561821

RESUMO

Each year, more than half a billion people in the world are affected by stress-related health disorders. Consequently, there is an urgent need for new insights to guide interventions designed to increase stress resilience. Studies of humans and various animals have uncovered the process of stress inoculation, in which exposure to mild stressors enhances subsequent stress resilience. Here, we investigate whether stress inoculation-induced resilience in mice consistently occurs across a multiplicity of different stress contexts (tests). C57BL/6 J adult male mice were randomised either to stress inoculation training (n = 36) or to a non-inoculated, but handled control condition (n = 36). Thereafter, indications of coping and resilience were assessed during (i) acute social defeat in a context similar to that used for stress inoculation training, and (ii) fear conditioning and learned extinction in a novel context. Stress inoculation effects were also assessed during (iii) tail-suspension and (iv) open-field tests that each represent milder stressors. Stress-inoculated mice showed more active defence behaviour during acute social defeat, higher sociability before and after defeat, and greater indications of learned extinction of conditioned fear compared to non-inoculated control mice. Stress-inoculated mice also responded with diminished tail-suspension immobility and open-field defecation. Results suggest that stress inoculation protects against various stressors that differ in quality and relative intensity. Stress inoculation research in mice may serve as the basis for mechanistic studies of global resilience in humans.


Assuntos
Resiliência Psicológica , Estresse Psicológico , Adaptação Psicológica , Animais , Medo , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Psychiatry ; 11: 518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581888

RESUMO

Recent interest in the role of microbiota in health and disease has implicated gut microbiota dysbiosis in psychiatric disorders including major depressive disorder. Several antidepressant drugs that belong to the class of selective serotonin reuptake inhibitors have been found to display antimicrobial activities. In fact, one of the first antidepressants discovered serendipitously in the 1950s, the monoamine-oxidase inhibitor Iproniazid, was a drug used for the treatment of tuberculosis. In the current study we chronically treated DBA/2J mice for 2 weeks with paroxetine, a selective serotonin reuptake inhibitor, and collected fecal pellets as a proxy for the gut microbiota from the animals after 7 and 14 days. Behavioral testing with the forced swim test revealed significant differences between paroxetine- and vehicle-treated mice. Untargeted mass spectrometry and 16S rRNA profiling of fecal pellet extracts showed several primary and secondary bile acid level, and microbiota alpha diversity differences, respectively between paroxetine- and vehicle-treated mice, suggesting that microbiota functions are altered by the drug. In addition to their lipid absorbing activities bile acids have important signaling activities and have been associated with gastrointestinal diseases and colorectal cancer. Antidepressant drugs like paroxetine should therefore be used with caution to prevent undesirable side effects.

20.
Redox Biol ; 34: 101597, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32513477

RESUMO

Ocular vascular dysfunction is a major contributing factor to the pathogenesis of glaucoma. In recent years, there has been a renewed interest in the role of angiotensin II (Ang II) in mediating the disease progression. Despite its (patho)physiological importance, the molecular mechanisms underlying Ang II-mediated oxidative stress remain largely unexplored in the ocular vasculature. Here, we provide the first direct evidence of the alterations of proteome and signalling pathways underlying Ang II-elicited oxidative insult independent of arterial pressure changes in the ophthalmic artery (OA) and retina (R) employing an in vitro experimental model. Both R and OA were isolated from male C57Bl/6J mice (n = 15/group; n = 5/biological replicate) and incubated overnight in medium containing either vehicle or Ang II (0.1 µM) at physiological conditions. Label-free quantitative mass spectrometry (MS)-based proteomics analysis identified a differential expression of 107 and 34 proteins in the R and OA, respectively. Statistical and bioinformatics analyses revealed that protein clusters involved in actin cytoskeleton and integrin-linked kinase signalling were significantly activated in the OA. Conversely, a large majority of differentially expressed retinal proteins were involved in dysregulation of numerous energy-producing and metabolic signalling pathways, hinting to a possible shift in retinal cell bioenergetics. Particularly, Ang II-mediated downregulation of septin-7 (Sept7; p < 0.01) and superoxide dismutase [Cu-Zn] (Sod1; p < 0.05), and upregulation of troponin T, fast skeletal muscle (Tnnt3; p < 0.05) and tropomyosin alpha-3 chain (Tpm3; p < 0.01) in the OA, and significant decreased expressions of two crystallin proteins (Cryab; p < 0.05 and Crybb2; p < 0.0001) in the R were verified at the mRNA level, corroborating our proteomics findings. In summary, these results demonstrated that exogenous application of Ang II over an acute time period caused impairment of retinal bioenergetics and cellular demise, and actin cytoskeleton-mediated vascular remodelling in the OA.


Assuntos
Angiotensina II , Artéria Oftálmica , Citoesqueleto de Actina , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Retina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...